
Empathy Is Moderated by Genetic Background in Mice
QiLiang Chen1., Jules B. Panksepp2., Garet P. Lahvis3*

1 Undergraduate Program in Clinical Laboratory Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 2 Neuroscience Training

Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 3 Department of Behavioral Neuroscience, Oregon Health and Science

University, Portland, Oregon, United States of America

Abstract

Empathy, as originally defined, refers to an emotional experience that is shared among individuals. When discomfort or
alarm is detected in another, a variety of behavioral responses can follow, including greater levels of nurturing, consolation
or increased vigilance towards a threat. Moreover, changes in systemic physiology often accompany the recognition of
distressed states in others. Employing a mouse model of cue-conditioned fear, we asked whether exposure to conspecific
distress influences how a mouse subsequently responds to environmental cues that predict this distress. We found that
mice are responsive to environmental cues that predict social distress, that their heart rate changes when distress
vocalizations are emitted from conspecifics, and that genetic background substantially influences the magnitude of these
responses. Specifically, during a series of pre-exposure sessions, repeated experiences of object mice that were exposed to a
tone-shock (CS-UCS) contingency resulted in heart rate deceleration in subjects from the gregarious C57BL/6J (B6) strain,
but not in subjects from the less social BALB/cJ (BALB) strain. Following the pre-exposure sessions, subjects were
individually presented with the CS-only for 5 consecutive trials followed by 5 consecutive pairings of the CS with the UCS.
Pre-exposure to object distress increased the freezing responses of B6 mice, but not BALB mice, on both the CS-only and
the CS-UCS trials. These physiological and behavioral responses of B6 mice to social distress parallel features of human
empathy. Our paradigm thus has construct and face validity with contemporary views of empathy, and provides
unequivocal evidence for a genetic contribution to the expression of empathic behavior.
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Introduction

The detection of discomfort in others can engender a variety of

behavioral responses. For instance, distressed conspecifics can

prompt vigilance towards a threat, such as an approaching

predator, that is not perceived directly [1,2]. Another example

includes the role of infant vocalizations in provoking parental care

toward their immediate needs [3,4]. Moreover, social interactions

with a distressed conspecific can activate brain regions that are

responsive to a direct experience with threatening stimuli [5].

Detection of distress is also a necessary aspect for social learning.

In nature, social learning can confer a substantial benefit, allowing

an individual to identify cues that are predictive of a salient

situation without directly experiencing the potential threats [6–8].

However, social learning often entails the transfer of additional

information between individuals, typically related to the perfor-

mance of operant tasks. Such tasks can include techniques to

obtain food [9–12] or manoeuvres to avoid predators [13,14].

Thus, social learning can require a variety of functions, including

an ability to perceive distress in others, recognizing when

environmental cues co-occur with social distress, and executing a

behavioural sequence that minimizes exposure to the indirectly

perceived threat (see Ref. [15] for a review). Importantly, distinct

biological factors may contribute to each of these abilities. In the

present study, we focused specifically on the process by which a

mouse acquires fear in relation to a stimulus that is predictive of

distress in others, irrespective of its subsequent ability to avoid a

threatening situation.

Several definitions of socio-emotional processing, exemplified by

the detection and emotional response to discomfort in others, are

strikingly similar to perspectives on empathy. Lipps’ classical

conception of einfühlung or ‘feeling into’ [16] was translated to

‘empathy,’ a term that has since been expanded and refined [17].

Contemporary definitions of empathy continue to maintain a

primary role for affective reactivity to others; the generation of an

affective state more appropriate to the situation of another

compared to one’s own [18]. In this regard, a recent study

demonstrated that mice respond differentially to the level of distress

experienced by a nearby conspecific, a finding that was interpreted

as a basic form of empathy [19]. However, more developed forms of

empathy may be required for social learning. For instance, the

experience of conspecific discomfort might influence how a mouse

subsequently responds to the environmental cues that predict this

distress. Furthermore, although association studies in humans have

suggested a genetic contribution to empathic processing [20], it

remains unknown whether genetic factors directly influence

receptivity to discomfort in others.

We addressed these possibilities in the present study by using a

modified cue-conditioned fear paradigm that has been used

extensively to elucidate fear circuitry within the mammalian brain
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[21,22]. A standard fear conditioning procedure entails presenting an

animal with a neutral stimulus, such as a tone (conditioned stimulus,

CS), that is forward paired with exposure to an aversive stimulus, such

as an electrical shock (unconditioned stimulus, UCS). Upon repeated

administration of the paired CS-UCS, a fear response is acquired,

which is expressed as freezing in response to presentation of the CS-

only. This freezing response is indicative of fear [21] and may be

adaptive within natural contexts [23–26].

Studies of social learning typically employ the terms ‘demonstrator’

and ‘observer’ to denote an individual the actively participates in a

task versus an individual that learns through social observation,

respectively. However, consistent with the empathy literature, we

decided to use the terms ‘object’ and ‘subject’, which bare similarity

to the demonstrator–observer nomenclature, but do not imply that

individuals perform an operant task. We adopted a protocol that

included a series of observation (‘pre-exposure’) sessions in which

subjects experienced object mice that were repeatedly exposed to a

tone forward paired with a shock (Figs. 1a–b). Using this

approach, we asked whether the experience of objects undergoing

a CS-UCS contingency could subsequently modify subject

responses to presentation of the CS-only and to the CS-UCS.

Freezing does not require the acquisition of an ability to perform a

Figure 1. The fear conditioning apparatus and conditioning schedules. (a) Subject mice from the BALB (white mouse) and B6 (dark grey
mouse) strains were separated from 2 novel, F1 object mice (brown mice) that received a 2-s electrical shock (UCS objects) and/or a 30-s tone (CS) under
different conditioning schedules (pre-exposure sessions). Both subjects and objects were exposed to the CS, but only objects directly experienced the
UCS. Subjects had access to object distress cues (UCS subjects) that were emitted as a consequence of receiving the UCS. (b) Photograph of the fear
conditioning apparatus from an overhead perspective. (c–f) Each conditioning schedule is representative of one 120-s trial.
doi:10.1371/journal.pone.0004387.g001
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specific operant task, thereby allowing for more direct compari-

sons to the large body of data regarding fear learning [21,22].

Furthermore, we compared mice from the BALB and B6 strains

because they express substantial differences in adolescent social

motivation [27,28], which may be associated with the ability to

process social information [29].

Results

BALB mice acquire freezing responses to a CS-UCS
contingency more rapidly than B6 mice

To assess how exposure to social distress subsequently influences

freezing behavior, it was first necessary to evaluate the freezing

responses of BALB and B6 mice to direct presentation of the CS

(see Fig. 1f) and the paired CS-UCS (see Fig. 1c). When test mice

were placed individually in a fear-conditioning arena and they

were presented with the CS-only (the CS was 30-s tone) for 10

consecutive trials, their freezing responses were minimal and

strain-independent (Fig. 2a; effect of genotype, F[1,20] = 1.60,

P = 0.22), indicating that presentation of the CS was not salient

without conditioning. When test mice were assessed during the

first 28 s of a CS that was forward paired with a UCS (the UCS

was a 2-s shock) for 10 consecutive trials, test mice from both

strains expressed longer freezing responses across successive

conditioning trials (Fig. 2b). However, with repeated trials a

strain difference emerged, as BALB mice froze for longer periods

of time than B6 mice on trials 5–10 (genotype6trial interaction,

F[9,20] = 3.53, P = 0.009).

Pre-exposure of BALB and B6 mice to distressed
conspecifics has a differential influence on subsequent
freezing behavior to both the CS-only and the paired CS-
UCS

We next compared the freezing responses of BALB and B6

subject mice after they had experienced unfamiliar objects receive

repeated forward-pairings of the CS with the UCS. Prior to

testing, two subjects were placed individually into observation

compartments facing the fear-conditioning arena (i.e., the

demonstration compartment) that contained objects (Figs. 1a–
b). After habituation to the demonstration compartment (see

Materials & Methods), objects received 20 trials (10 trials/

session, 1 session/day) of the paired CS-UCS contingency

(Fig. 1c). During these ‘pre-exposure’ trials, subjects could hear

the CS, but did not directly experience the UCS. Approximately

15 min after the second pre-exposure session, freezing responses of

subjects were evaluated in the fear-conditioning arena. In this

testing phase of the experiment, the freezing behavior of subjects

was measured in response to 5 consecutive CS-only presentations

followed by 5 consecutive presentations of the CS forward paired

Figure 2. Freezing responses of test mice during direct presentation of the CS-only or the paired CS-UCS. (a) When mice were not pre-
exposed to objects or conditioned themselves, there was no strain difference in freezing to the CS (N = 12 mice/genotype; age = 6–7 wks). (b) BALB
mice expressed longer freezing responses than B6 mice on trials 5-10 when they had not been pre-exposed to objects, but were directly exposed to
the CS-UCS contingency (N = 16 mice/genotype; age = 7–8 wks). Asterisks represent significant differences between BALB and B6 mice as assessed by
a Bonferroni step-down procedure on a trial-by-trial basis (/= 0.005 for each trial). All data were scored in duplicate by 2 independent raters (see the
figure legend corresponding to Figure 3 for the inter-rate reliability) and are presented as the mean6s.e.m.
doi:10.1371/journal.pone.0004387.g002
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with the UCS. Thus, freezing during test trials 1-6 occurred in

response to presentation of the tone-only, whereas freezing on test

trials 7-10 occurred in the context of direct presentation of the

tone-shock contingency. Although the sex of the subject mice was

included in all analyses of freezing behavior, no significant effects

were found and this independent variable is therefore not

considered further.

B6 subjects expressed longer freezing responses than BALB

subjects after exposure to objects receiving the CS-UCS

contingency (Fig. 3a; effect of subject genotype, F[1,124] = 53.8,

P,0.0001). CS-only trials (trials 1-6) elicited freezing by B6

subjects for 13.561.28% of the time (mean6s.e.m.) compared to

3.060.67% of the time for BALB subjects (orthogonal contrast,

P,0.001). B6 subjects therefore expressed enhanced freezing in

response to the CS even though they had not directly experienced

the CS-UCS association themselves. These B6 subjects also

exhibited enhanced fear learning (trials 7-10) relative to BALB

subjects (orthogonal contrast, P,0.001). After 4 direct experiences

with the CS-UCS (trial 10 in Fig. 3a), the freezing responses of B6

subjects (93.761.66%) were longer than those of experience-

matched BALB subjects (73.064.06%) and of object-inexperi-

enced B6 mice (42.765.89%; trial 5 in Fig. 2b).

To further characterize the enhanced freezing responses of B6

subjects, we pre-exposed subject mice of both strains to objects that

received different combinations of the CS and UCS (Figs. 1d–f;
subject genotype6object condition interaction, F[3,124] = 6.24,

P = 0.0006). In an initial control experiment, object mice were

exposed to the CS and UCS, but the conditioning stimuli were not

paired (Fig. 1d). Even after pre-exposure to objects experiencing

this unpaired CS-UCS, B6 subjects expressed longer freezing

responses than BALB subjects (Fig. 3b) during several of the CS-

only (orthogonal contrast, P = 0.03) and paired CS-UCS (orthog-

onal contrast, P,0.001) test trials. In a second control experiment,

we compared the freezing responses of subjects after they

experienced object mice receive the UCS-only (Fig. 1e). B6

subjects again expressed longer freezing relative to BALB subjects

(Fig. 3c) in response to presentation of the CS-only (orthogonal

contrast, P = 0.003) and the paired CS-UCS (orthogonal contrast,

P,0.001). Consistent with a non-associative influence of UCS

presentation on fear responses [30,31], these findings indicate that

B6 freezing is amplified by the experience of object distress

regardless of its precise relationship to the CS. Importantly,

however, B6 freezing responses after pre-exposure to objects

receiving the paired CS-UCS contingency were more robust than

after they experienced the other pre-exposure conditions (subject

genotype6object condition6trial type interaction, F[9,118] = 2.59,

P = 0.009; orthogonal contrast for the paired CS-UCS object

condition vs. all other object conditions, P,0.0001). Furthermore,

after pre-exposure to object mice receiving the CS-only (Fig. 1e),

subjects from both strains did not express a freezing response to the

CS (orthogonal contrast, P = 0.43) and their responses to the paired

CS-UCS were also similar (Fig. 3d; orthogonal contrast, P = 0.48).

To determine whether subject mice from either strain

responded to objects as they received the UCS, we monitored

subjects in another experiment during presentation of the UCS to

object mice. When objects received the UCS, subjects from both

strains oriented towards the demonstration compartment (Fig. 4a).

However, neither BALB nor B6 subject mice expressed freezing

responses immediately after objects received the UCS (Fig. 4b;

effect of genotype, F[9,12] = 1.12 P = 0.42). Although we did not

quantify this response, it is also worth noting that during many

trials of the pre-exposure sessions both BALB and B6 subject mice

exhibited a brief eye-closure response that was coincident with

object distress.

Pairing of object ‘distress’ vocalizations with the CS
during pre-exposure sessions enhances B6 freezing to
subsequent presentation of the CS

Although visual and somatosensory information could not be

transmitted between the objects and subjects during the pre-

exposure sessions (see Materials & Methods), object distress

could have been communicated through auditory or olfactory

cues. In fact, object mice consistently emitted audible vocalizations

in response to the UCS (Table 1). To assess the role of these

‘distress’ vocalizations, we pre-exposed BALB and B6 subjects to

recordings of vocalizations of objects receiving the UCS (Fig. 5)

forward paired with the CS (10 trials/session, 1 session/day).

Twenty trials of this contingency was sufficient to reproduce the

strain difference in subject freezing, particularly on test trials

involving the CS-only (Fig. 6; genotype6conditioning context

interaction, F[2,56] = 2.11, P = 0.05).

Heart rate is responsive to both self-distress and social
distress and to cues that predict these states

Physiological parameters, such as heart rate (HR) and skin

conductance, provide an additional perspective into the sensitivity

of individuals to their own distress and the distress of others

[30,32]. We employed radiotelemetry (see Materials & Meth-
ods) to monitor the HR of mice either as they experienced the

CS-UCS contingency directly or while objects underwent

conditioning with the CS-UCS during pre-exposure sessions.

The baseline HR of test/subject mice during different phases of

these experiments are presented in Table 2 (maximum percent-

changes in HR from baseline ranged from +6.4% to 215.0%).

During habituation to the conditioning compartment, a single

direct experience of the UCS resulted in elevated output from the

heart in both BALB and B6 mice (maximum HR increase6s.e.m.;

+4068 and +2369 bpm for BALB & B6 mice, respectively), which

peaked <120 s after the UCS was applied (Fig. 7). Repeated

presentation of the CS-UCS contingency directly to BALB test

mice engendered progressive HR deceleration (Fig. 8a, maximum

HR decrease6s.e.m.; 278613 bpm), whereas B6 test mice

experienced an initial HR increase, which peaked prior to the

second conditioning trial (+32615 bpm), followed by a HR

deceleration that reached a maximum during the sixth condition-

ing trial (278615 bpm). The HR of B6 mice returned to its

preconditioning level by the final conditioning trial (Fig. 8a).

During testing, which entailed 5 successive CS-only trials, HR

deceleration in both BALB and B6 test mice (278629 and

24069 bpm for BALB & B6 mice, respectively) reached a

maximum during the second test trial before returning to baseline

levels by the final test trial (Fig. 8b). B6 freezing was longer than

BALB freezing on all of the CS-only test trials (Fig. 8c), indicating

that B6 mice had stronger fear responses than BALB mice upon

‘recall’ of the CS-UCS association.

In another set of experiments, we monitored the HR of BALB

and B6 subject mice as they experienced objects being exposed to

the CS-UCS. During the early portion of these pre-exposure

sessions, the HR of BALB and B6 subjects accelerated (Fig. 9a;

+3568 bpm and +1264 bpm for BALB & B6 subjects,

respectively). However, the HR of BALB subjects returned to

baseline levels by the final conditioning trial, whereas the HR of

B6 subjects decelerated (248610 bpm) below its starting level.

During the CS-only trials of the testing session, the HR of BALB

and B6 subjects gradually diverged (Fig. 9b), and a strain-

dependent difference was evident by the fifth CS-only trial.

Importantly, the strain-dependent difference in freezing to

presentation of the CS was reproduced on all test trials (Fig. 9c).

Empathy in Mice
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It is also noteworthy that, irrespective of the conditioning context

(i.e., direct conditioning of test mice or pre-exposure of subject

mice to objects receiving conditioning), HR deceleration during

conditioning was always associated with pronounced freezing

responses during the subsequent CS-only test trials.

Social investigation and social reward differ between
BALB and B6 mice

The finding that B6 freezing was sensitive to conspecific distress,

but BALB freezing was not, is remarkable because mice from these

strains also differ in adolescent social motivation [27,28]. Using a

social investigation (SI) paradigm, we found that the magnitude of

SI by early-adolescent B6 mice was greater than that of age-

matched BALB mice towards a novel F1 conspecific (similar to the

object mice used during the pre-exposure sessions of the earlier

experiments), although this strain difference was not maintained

through late adolescence (Fig. 10a; genotype6age interaction,

F[2,48] = 6.50, P = 0.01). Furthermore, B6 mice expressed a

socially conditioned place preference (SCPP) throughout early

and late adolescence (Fig. 10b). By contrast, BALB mice were

indifferent to social opportunities at both stages of adolescent

development (effect of genotype, F[1,48] = 8.77, P = 0.005;

genotype6age interaction, F[2,48] = 0.01, P = 0.91).

Social isolation suppresses the influence of object
distress on B6 freezing

Our findings suggest that B6 mice might be more sensitive to

manipulations of their social environment than BALB mice. To

test this idea, we conducted an experiment in which subjects were

isolated 24 h prior to being exposed to objects (to increase social

motivation during the pre-exposure sessions; see Ref. [33]). The

freezing responses of B6 subjects during testing were sensitive to

social isolation, particularly during CS-UCS test trials, whereas

BALB freezing did not change as a function of social isolation

(Fig. 11; subject genotype6housing condition interaction,

F[1,96] = 7.60, P = 0.007). Thus, the enhanced B6 freezing

Figure 4. Head orientations and freezing responses of subjects during exposure to object distress. (a) Estimates of subject head
orientations were extracted from freeze-frames of video recordings at 2 time-points with respect to UCS presentation to objects (30 s pre-UCS and
1 s post-UCS). The longitudinal axis of the subject’s head, running parallel with the sagittal midline, was referenced at 15u increments. A 0u head
orientation was defined by the longitudinal axis of the subject’s head forming a right angle with the steel dowels that separated the observation and
demonstration compartments. Prior to presentation of the UCS to objects, BALB (left panels; N = 16 mice; age = 7–8 wks) and B6 (right panels; N = 8
mice, age = 7–8 wks) subjects were orientated towards the demonstration compartment (mean head angle = dotted black lines, std. dev. = grey
shaded area). Following presentation of the UCS to objects, subject head orientations were more consistently directed at objects (depicted by red
dotted lines and pink shading), as indicated by a <2-fold reduction in variability of head orientations (Brown-Forsythe ANOVA, P,0.001 for both
BALB and B6 subjects). (b) The freezing responses of these subjects were minimal and strain-independent during the 30-s period following
presentation of the UCS to objects. Data in panel (b) are presented as the mean6s.e.m.
doi:10.1371/journal.pone.0004387.g004

Figure 3. Freezing responses of subject mice to the CS-only and the paired CS-UCS following pre-exposure to object mice under
different conditioning schedules. The top of each panel contains a graphical representation of a single conditioning trial of the type that objects
received during the pre-exposure sessions. The data in each panel depict the freezing behavior of subjects after pre-exposure sessions in response to
the CS before (trials 1-6) and after (trials 7-10) it was forward paired with the UCS. (a) When previously exposed to objects receiving the paired CS-
UCS, B6 subjects expressed more freezing than BALB subjects on 9 (of 10) test trials (N = 26 subjects/genotype; age = 5–7 wks). (b) B6 subjects
expressed more freezing than BALB subjects on 5 (of 10) test trials when they were previously exposed to objects receiving the unpaired CS-UCS
(N = 18 subjects/genotype; age = 5–7 wks). (c) B6 subjects expressed more freezing than BALB subjects on 3 (of 10) test trials when they were
previously exposed to objects receiving the UCS-only (N = 14 subjects/genotype; age = 5–6 wks). (d) Freezing responses of BALB and B6 subjects
were similar on all test trials when they were previously exposed to objects receiving the CS-only (N = 16 subjects/genotype; age = 5–7 wks). Note
that in all cases the UCS was presented during the final 2 s of trial 6, which was not included in the measurements of freezing. Asterisks represent
significant differences between BALB and B6 mice as assessed by a Bonferroni step-down procedure on a trial-by-trial basis (/= 0.008 and 0.013 for
trials 1-6 and trials 7-10, respectively). All data were scored in duplicate by 2 independent raters and are presented as the mean6s.e.m. Inter-rater
reliability, Pearson’s correlation, rp = 0.94, d.f. = 1,984.
doi:10.1371/journal.pone.0004387.g003
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response following pre-exposure to distressed conspecifics was

sensitive to the social housing conditions that preceded testing.

Discussion

During the present studies, a learning process was engaged as

subject mice experienced conspecifics in distress. Following pre-

exposure to objects that underwent CS-UCS conditioning, B6

mice expressed freezing responses to the CS-only (test trials 1-6),

whereas B6 mice that were pre-exposed to non-distressed objects

did not respond appreciably to presentation of the CS. Thus, B6

subjects acquired a classical conditioning (Pavlovian) association,

which engendered a freezing response that was dependent upon

the previous experience of distress in nearby conspecifics. This

social learning process was not evident in BALB mice; they did not

freeze in response to the CS-only after pre-exposure to distressed

objects. CS-induced freezing after Pavlovian conditioning is

thought to reflect a state of fear [21,22]. The augmented freezing

Table 1. Descriptive statistics for object distress vocalizations.

Vocalizations/UCS 7.760.56 calls

Duration 221.06170.43 ms

Dominant frequency 19.5617.55 kHz

Bandwidth 57.0614.57 kHz

Vocalizations were recorded from 20 different pre-exposure sessions and
sonograms were generated for each respective UCS presentation (10/session).
Data are presented as the mean6std. dev.
doi:10.1371/journal.pone.0004387.t001

Figure 5. Distress vocalization of an object during UCS
presentation. (a) Representative sonogram of an object distress
vocalization recorded in real-time without the demonstration compart-
ment enclosed by PlexiglasH. (b) Sonogram of the same vocalization
played back through a speaker without the demonstration compart-
ment enclosed. (c) Sonogram of the same vocalization played back
through a speaker with the demonstration compartment enclosed.
Color-coding indicates the relative decibel level for the call, with blues
representing low-intensity energy and red/yellow representing high-
intensity energy.
doi:10.1371/journal.pone.0004387.g005

Figure 6. Freezing responses of subjects after pre-exposure to the CS paired with playback of object distress vocalizations. (a)
Subjects were exposed to objects during conditioning, but the CS-UCS was not presented to objects (N = 10 subjects/genotype; age = 5–7 wks). (b)
Subjects were exposed to objects receiving the paired CS-UCS during conditioning (N = 8 subjects/genotype; age = 5–6 wks). (c) Subjects were not
exposed to objects, but received the CS forward paired with the playback of object distress vocalizations during conditioning (N = 16 subjects/
genotype; age = 5–7 wks). Asterisks represent a significant (P,0.05) difference between subjects from the BALB and B6 strains. All data were scored
in duplicate by 2 independent raters and are presented as the mean6s.e.m. Inter-rater reliability, rp = 0.96, d.f. = 659.
doi:10.1371/journal.pone.0004387.g006
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Table 2. Baseline heart rates of test/subject mice during
different phases of the conditioning protocol.

BALB/cJ C57BL/6J

Habituation (Fig. 7; test/subject mice) 686611 bpm 75468 bpm

Conditioning (Fig. 8; test mice) 700613 bpm 745616 bpm

Testing (Fig. 8; test mice) 705624 bpm 776615 bpm

Conditioning (Fig. 9; subject mice) 671614 bpm 76165 bpm

Testing (Fig. 9; subject mice) 674622 bpm 760616 bpm

Baseline heart rates of test/subject mice were calculated from a 90-s period that
occurred immediately before the beginning of each habituation, conditioning/
pre-exposure and testing period. Each of these periods began 20 min after a
mouse was placed in the conditioning apparatus. There were no within-strain
differences in baseline heart rate across different phases of the conditioning
protocol. A previously described strain difference in baseline heart rate [42] was
found during all phases of the experiments (P,0.01). Data are presented as the
mean6s.e.m.
doi:10.1371/journal.pone.0004387.t002

Figure 7. Heart rate changes of mice after a single exposure to
the UCS. During habituation to the conditioning apparatus, HR was
measured for 5 min following presentation of a single UCS. Mice from
the experiments illustrated in Figures 8 and 9 were treated in the same
way during the habituation period, and were therefore pooled for
graphical presentation and analysis (N = 24 mice/genotype; age = 7–
13 wks). Each data point represents a 10-s bin. HR is presented as a
change (D) from the baseline HR of each mouse (see Table 2). All data
presented as the mean6s.e.m.
doi:10.1371/journal.pone.0004387.g007

Figure 8. Heart rate changes of mice during direct conditioning with the CS-UCS and testing with the CS-only. HR was measured
during (a) the first and second conditioning session in mice that directly received the paired CS-UCS, and during (b) testing, which entailed 5
repeated presentations of the CS-only. HR changes in mice from both strains were similar across the 2 conditioning sessions and therefore pooled for
graphical presentation. Each data point represents a 10-s bin. HR is presented as a change (D) from the baseline HR of each mouse (see Table 2). (c)
Conditioned freezing responses of mice during presentation of the CS-only (N = 9 subjects/genotype; age = 12–13 wks). Asterisks represent
significant (P,0.05) HR differences between BALB and B6 mice. Numeric symbols represent significant (P,0.05) differences in freezing between BALB
and B6 mice. Behavioral data were scored in duplicate by 2 independent raters and all data are presented as the mean6s.e.m. Inter-rater reliability,
rp = 0.90, d.f. = 74.
doi:10.1371/journal.pone.0004387.g008
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response of B6 subject mice on test trials 1-6 therefore represents

the social transfer of fear from objects to subject.

Following pre-exposure to distressed object mice, B6 subjects

also expressed enhanced acquisition of conditioned fear (relative to

other groups) during the test trials in which they were directly

exposed to the paired CS-UCS contingency (test trials 7-10). This

enhanced B6 freezing response during CS-UCS conditioning may

reflect a persistence of the effect that was evident on test trials 1-6.

Alternatively, enhanced B6 freezing during the CS-only and CS-

UCS test trials may be due to an independent influence. For

example, while the longer freezing responses of B6 mice on trials

1-6 is mediated by the passive transfer of fear from objects to

subject, enhanced B6 freezing on trials 7-10, by contrast, could

reflect the combined influence of this effect and individual

learning, or it could be attributable to a distinct process, such as

social facilitation of individual learning. Importantly, we also do

not yet know whether the enhanced B6 freezing response occurs

specifically to presentation of the CS, or whether it also depends

on concurrent recognition of it’s own spatial position relative to the

appropriate (contextual) environment.

The enhanced B6 freezing response (relative to BALB mice) was

not directly related to a difference in the ability to learn

associations or to orient to distressed objects. These observations

indicate that there may be strain-dependent differences in the

emotional responses of mice to social distress. In this regard, a

basic form of empathy (i.e., emotional contagion) was recently

identified in mice [19]. In these experiments, subject writhing

behavior in response to pain was modulated by the degree of

concurrent writhing generated by nearby objects [19], analogous

perhaps to infectious crying among babies [34]. While our results

are similar to the demonstration of emotional contagion in mice,

they also bare important differences. First, the subject mice in the

present experiments expressed minimal freezing behavior imme-

diately after the induction of object distress. Moreover, freezing

responses of the subject mice tested here were measured when

objects (and their associated distress cues) were not present in the

testing arena. Thus, the augmented freezing behavior of B6

subjects in the present experiments is not directly attributable to a

difference in emotional contagion. Lipps (1903) characterized

empathy as a process by which ‘‘the perception of an emotional

Figure 9. Heart rate changes of subjects during pre-exposure to objects that were conditioned with the CS-UCS and during testing
with the CS-only. HR was measured during (a) the first and second conditioning session in subjects that experienced objects receiving the paired
CS-UCS, and during (b) testing, which entailed 5 repeated presentations of the CS-only. HR changes in subjects from both strains were similar across
the 2 conditioning sessions and therefore pooled for graphical presentation. Each data point represents a 10-s bin. HR is presented as a change (D)
from the baseline HR of each mouse (see Table 2). (c) Conditioned freezing responses of subjects during presentation of the CS-only (N = 15 subjects/
genotype; age = 7–9 wks). Asterisks represent significant (P,0.05) HR differences between BALB and B6 subjects. Numeric symbols represent
significant (P,0.05) differences in freezing between BALB and B6 subjects. Behavioral data were scored in duplicate by 2 independent raters and all
data are presented as the mean6s.e.m.. Inter-rater reliability, rp = 0.94, d.f. = 143.
doi:10.1371/journal.pone.0004387.g009
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gesture in another [object] directly activates the same emotion in

the perceiver [subject], without any intervening labelling, associa-

tive or cognitive perspective-taking processes’’ (passage quoted

from ref. [17], pp. 2; bracketed italics added by us). Using this

definition, empathy may be widespread among mammalian

species [34]. In this regard, the enhanced responses of B6 mice

to CS presentation, without any previous experience of self-distress

in relation to the CS, may result from an association between the

CS and the embodiment of others’ distress.

The capacity to learn associations between emotions in others

and the cues that predict these states may be a developmental

substrate for the emergence of more sophisticated forms of

empathy [29]. The ability to rapidly learn an associative

relationship through the experience of others’ distress has been

demonstrated by studies in which mice learn to avoid predatory

flies [13,14,35–37]. In these studies, mice displayed conditioned

hypoalgesia and active burying responses upon exposure to non-

biting (altered) flies if they had previously observed a demonstrator

self-burying 24 hours earlier to avoid biting flies. This burying

response is particularly interesting because it was not evident in

naı̈ve mice that were exposed to altered flies [13] nor did observer

mice bury themselves when demonstrators were concurrently

exposed to biting flies [14]. Thus, while the increased pain

tolerance of observer mice in this paradigm was dependent on the

experience of demonstrators being bitten (presumably mediated

through several senses), their learned active avoidance (burying)

response was additionally contingent upon visual detection of a

demonstrator actively burying itself in bedding to escape the biting

flies [13,14]. Our findings demonstrate that mice can acquire

salient, emotional information from conspecifics even when they

cannot observe the object’s behavioral response to the UCS.

Importantly, empathy does not require performance of a specific

behavioral response. Thus, while B6 subjects expressed enhanced

freezing responses following pre-exposure to object distress, we

cannot rule out the possibility that BALB mice may also express

empathy. Empathy in BALB mice may be manifest through

behavioral responses other than CS-induced freezing, may be

manifest only at a physiological level, or may occur under different

conditions, such as experiencing distress in objects that are more

familiar (e.g., see Refs. [19,37]).

The human empathy literature consistently reports positive

correlations between measures of empathic responsiveness and

personality-trait indices of sociability [29]. It is thus interesting that

B6 mice exhibit high levels of sociability, social motivation and

social reward relative to BALB mice. Previous studies have

demonstrated that adolescent B6 mice express pronounced levels

of social investigation [27], prefer areas where conspecifics are

located [38,39] and return to environments where social

experiences have occurred [28]. By contrast, BALB mice have

been found to be much less responsive, or even averse [39] to

similar social opportunities. Although general measures of

sociability have been associated with empathy in humans, an

interesting possibility arising from these studies is that individuals

who are more likely to derive reward from a social interaction may

also be more prone to embody the emotional responses of others.

The HR changes that occurred in BALB and B6 subjects during

the pre-exposure sessions to distressed objects are also consistent

with features of human empathy. During the pre-exposure

sessions, both BALB and B6 subjects initially oriented towards

objects receiving the UCS and exhibited an initial increase in HR,

but they did not freeze. The HR of B6 subjects then decelerated

during repeated experiences of object distress. This finding is

similar to patterns that have been described in children who self-

report empathic feelings in relation to the experience of distress in

others [40]. Importantly, although there was a general association

between test/subject mouse HR deceleration during self/object

conditioning and subsequent freezing to the CS-only (B6 subjects,

and BALB and B6 test mice froze, while BALB subjects did not),

the magnitude and timing of the HR deceleration was not

precisely related to the duration of the subsequent freezing

response. Additional studies are required to determine the

sympathetic versus parasympathetic contribution to HR deceler-

ation during the experience of self-distress and others’ distress, and

Figure 10. Strain-dependent development of sociability in
adolescent mice. (a) Following 24 h of social isolation, early-
adolescent (age = <4 wks) B6 test mice expressed more social
investigation (SI) towards a novel, opposite-sex F1 mouse compared
to age-matched BALB mice. There was no difference in SI among late-
adolescent mice (age = 7–8 wks) from the BALB and B6 strains (N = 14
mice/genotype/age). The numeric symbol represents a significant
(P = 0.01), planned orthogonal contrast between BALB and B6 mice.
(b) Following 8 days of conditioning during early adolescence or late
adolescence, B6 mice expressed a social conditioned place preference
(SCPP), whereas BALB mice expressed social indifference at both time
points (N = 14 mice/genotype/age). SCPP scores were calculated by
subtracting the time a mouse spent in an isolation-paired environment
from the duration it spent in a socially paired environment (see
Materials & Methods). The asterisks represent significant (P,0.05),
planned orthogonal contrasts between BALB and B6 mice. All data are
presented as the mean6s.e.m.
doi:10.1371/journal.pone.0004387.g010
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whether this HR deceleration is a necessary feature of fear

learning.

Overall, our paradigm bears face and construct validity with

contemporary views of empathy [16–18,20,41]. Animal models

that deconstruct empathy into a collection of endophenotypes can

facilitate discovery of its underlying biological substrates. More-

over, employing such an approach in mouse genetics could be

highly relevant to identifying susceptibility factors for psychosocial

disorders, such as autism.

Materials and Methods

Ethics statement
All animal care and experimental protocols were conducted in

accordance with the regulations of the institutional care and use

committee at the University of Wisconsin-Madison and the NIH

Guide for the Care and Use of Laboratory Animals (ISBN 0-309-05377-3).

Personnel from our own laboratory carried out all aspects of the

mouse husbandry under strict guidelines to insure careful and

consistent handling of the mice.

Mouse husbandry and housing
Mice from the BALB/cJ (BALB) and C57BL/6J (B6) strains

were purchased from Jackson Laboratories (Bar Harbor, ME) and

bred within our colony at the University of Wisconsin (Madison,

WI) under tightly controlled temperature (2161uC), humidity (50–

60%) and lighting (14:10 h light/dark, dark period from 1130–

2130) conditions. New mice were routinely introduced to the

breeding colony and brother-sister matings were not conducted.

Mice were maintained under specific-pathogen free conditions and

housed in standard polypropylene cages (29061806130 mm) that

contained 1/80 grain-size corncob bedding (The Andersons) and

nesting material (Ancare Corp.) with ad libitum access to food

(Teklad Rodent Diet, Harlan) and water. Pregnant females were

isolated 10–15 days post-coitus and pups were weaned on

postnatal day (PD) 20–21 (day of birth = PD 0). Subjects were

weaned into mixed-sex social groups containing 4 age-matched

cage mates, with 1 mouse/sex from each strain. Subject mice were

housed in these mixed-strain social groups to give them experience

with mice of another genotype and to reduce the influences of

BALB- and/or B6-specific group structure on individual behavior.

Objects were derived from reciprocal F1 crosses between BALB

and B6 mice and were housed in mixed-sex social groups of 3–5

individuals/cage.

Fear-conditioning apparatus
The fear-conditioning arena, which was fabricated from ABS

plastic and PlexiglasH, contained a ‘demonstration’ compartment

(13061656150 mm) and two adjacent ‘observation’ compart-

ments (65682.5675 mm per observation compartment). The floor

Figure 11. Freezing responses of socially and isolate-housed subjects pre-exposed to objects receiving the CS-UCS contingency.
Subjects were either isolated or remained in a social housing context outside of their observations of objects receiving the paired CS-UCS during the
pre-exposure session. Since freezing responses of socially housed subjects in this experiment (N = 10 subjects/genotype; age = 6–8 wks) did not differ
(P = 0.20) from responses of mice that were evaluated in the experiment presented in Figure 3a, the data were pooled for graphical presentation and
statistical analysis. Social isolation did not alter the freezing responses of BALB subjects, but it depressed fear acquisition to presentation of the paired
CS-UCS in B6 subjects (N = 20 subjects/genotype; age = 7–8 wks). Socially housed B6 subjects expressed longer freezing responses than all other
groups on trials 7-10 (P = 0.006). Asterisks represent significant differences between socially housed B6 subjects and all other groups as assessed by a
Bonferroni step-down procedure on a trial-by-trial basis (/= 0.013 for trials 7-10). All data were scored in duplicate by 2 independent raters and are
presented as the mean6s.e.m. Inter-rater reliability (not including pooled data from Fig. 3a), rp = 0.94, d.f. = 547.
doi:10.1371/journal.pone.0004387.g011
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and one wall of the demonstration compartment were lined with a

shock grid composed of stainless steel dowels (3.2 mm diameter)

spaced 9.6 mm on center. A wall, consisting of two sets of

horizontal steel dowels extending vertically 75 mm from the floor,

separated the observation and demonstration compartments. This

wall allowed subjects to smell and hear objects, but eliminated

direct contact with the objects or the UCS (see Figs. 1a–b).

Scrambled current was provided to the dowels lining the

demonstration compartment, but not to those lining the

observation compartments. Within the observation compartments,

floors were lined with inactive stainless steel dowels and a plastic

wall separated each observation compartment. The CS was a 30-s

tone (1 kHz, 85 dB) delivered through DellH computer speakers.

The UCS was a scrambled, 2-s electrical shock (0.5 mA) delivered

by a CoulbournH Precision Animal Shocker (Model H13–15).

Fear-conditioning procedures
All behavioral experiments were conducted under dim red

illumination (30–40 lx) during the dark phase of the light-dark

cycle (1300–2100). Cages containing the subjects and objects were

transported from the mouse colony <5 m across a dimly lit

intervening room to a procedure room .30 min prior to the

beginning of all phases of the conditioning protocol (see below).

For most experiments, subject mice lived together for 2–4 weeks

prior to conditioning. Individual subjects were habituated to the

fear-conditioning arena for a 5-min period of free-exploration

followed by presentation of a single 2-s UCS (see Ref. [17]) prior to

being returned singly into a clean cage. After completion of the

habituation sessions for 2 subject mice, 2 age-matched objects

were randomly selected from a cage and placed together in the

demonstration compartment. We decided to use 2 objects instead

of one to enhance the influence of social distress. Then, the 2

subjects, which included same-sex individuals from different

strains, were placed separately into the observation compartments.

Home cages that contained the remaining subjects and objects

were removed from the procedure room while their cage mates

were pre-exposed to object mice receiving conditioning.

Object mice received 10 consecutive 120-s trials under one of

several conditioning schedules (see Figs. 1c–f), while subjects

remained in adjacent observation compartments, but did not

receive the UCS. Following the first pre-exposure session, subjects

and objects were re-grouped within their respective home cage. The

next day subjects received another pre-exposure session as objects

underwent another series of 10 conditioning trials. Following the

second pre-exposure session, each subject was placed singly into a

clean cage and one cage was transported to a holding room adjacent

to the procedure room. Subjects were tested <15 min after the

second pre-exposure session in a randomized order. Testing

entailed placing an individual subject in the fear conditioning arena

and exposing it to five 120-s, CS-only trials (trials 1-5) followed by

five 120-s trials with the CS-UCS presented in a paired fashion

(trials 6-10). All testing sessions were videotaped with a 3CCD

digital video camera (GL2, Canon Inc., Japan). Recordings were

transferred via a firewire cable directly to a DellTM PentiumH IV

desktop computer and stored for subsequent analysis.

The small size of the observation compartments that were used in

these experiments made it difficult to accurately measure the freezing

behavior of subject mice. Thus, for the experiments presented in

Figure 4, freezing responses of subjects to object distress were

evaluated within an enlarged observation compartment fitted to the

size of the demonstration compartment (13061656150 mm).

Subjects were habituated to this observation compartment for

10 min (without objects present) on the day prior to testing. On the

day of testing, two F1 objects were placed in the demonstration

compartment and 1 subject was placed in the observation

compartment. Object mice received a 2-s shock every 120 s.

For experiments that involved social isolation (see Fig. 11),

subjects were placed individually into a clean home cage 24 h

prior to habituation to the demonstration compartment. Socially

housed controls were placed as a group into a clean home cage

24 h before their habituation session. The mice used in this

experiment were previously evaluated for SI and SCPP (see

Fig. 10 and below), and these individuals were the only mice that

were assessed behaviorally more than once. The conditioning

apparatus was always cleaned thoroughly with 70% ethanol before

introducing new subjects/objects to the conditioning apparatus.

Vocalization recording
Mouse vocalizations were recorded during 20 different pre-

exposure sessions. An ultrasound microphone (UltraSoundGate

model CM16, Avisoft Bioacoustics) was inserted through a 30-mm

diameter opening (75 mm above the shock grid on center) in the

PlexiglasH wall of the demonstration compartment enclosure.

Vocalizations were collected with an UltraSoundGate 116

acquisition system and the Avisoft-Recorder v.2.97 (Avisoft

Bioacoustics), and stored as wav files for subsequent analysis.

Sonograms were generated for each conditioning session and

evaluated (SASLab Pro v.4.39, Avisoft Bioacoustics) for the

following vocalization parameters: total number (audible and

ultrasonic), duration, mean dominant frequency, and bandwidth.

Vocalization-playback experiments
Recordings of object vocalizations during UCS presentation

were reproduced for subjects through an ultrasound-capable

speaker (UltraSoundGate ScanSpeak, Avisoft Bioacoustics) situat-

ed in the demonstration compartment. To obtain recordings of

vocalizations without enclosure-induced distortions, 2 F1 mice (1/

sex) were tethered to an open shock grid and exposed to the UCS

(see Fig. 5). Fifteen representative recordings were sampled from

this pair of mice. During the pre-exposure sessions, subjects were

exposed to 10 consecutive CS-vocalization forward-pairings per

session (randomly selected vocalizations were paired with the CS

without substitution during each pre-exposure session). Vocaliza-

tions were played back at 85–92 dB. Thus, subjects were exposed

to the distress vocalizations of object mice, but were not exposed to

objects directly. Following the second pre-exposure session,

subjects were assessed in a manner consistent with the previously

described testing protocol. The freezing responses of subject mice

from this experimental group were compared to responses of

groups of additional subjects that either were exposed to objects

receiving no conditioning or paired CS-UCS presentation during

conditioning.

Heart rate monitoring
A radiotelemetric transponder (G2-HR E-MitterH) was surgi-

cally implanted into the peritoneum under isoflurane anesthesia

according to manufacturer’s instructions (Respironics Inc.).

Positive and negative leads ran subcutaneously rostral from the

transponder, and were affixed to the pectoral/chest muscles with

stainless steel sutures (34-gauge). Surgical wounds were closed with

polydioxanone sutures (5-0; PDS II, Ethicon Inc.) and cyanoac-

rylate (KrazyH Glue). Mice were treated postoperatively with a

topical 4% (w/w) lidocaine cream (Ferndale Laboratories Inc.) and

0.25% (w/v) bupivicaine HCl (0.1 ml s.c.) for pain management.

Mice were allowed to recover for 7–14 days following the surgery.

At the beginning of the experiments, the weight of each mouse was

either equal to or greater than their respective preoperative

weight.
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Habituation of test/subject mice. Individual mice were

placed within the demonstration compartment, above a telemetry

receiver, and left undisturbed for 20 min. A single 2-s UCS was

then delivered to the subject mouse and HR was monitored for

5 min post-UCS.

Conditioning/pre-exposure sessions. For the experiment

presented in Figure 8, individual test mice were placed in the

‘demonstration’ compartment, acclimated for 20 min and then

conditioned directly with the paired CS-UCS. For the experiment

presented in Figure 9, an individual subject was placed within a

randomly selected observation compartment and acclimated for

20 min on the telemetry receiver while 2 novel, age-matched

objects (one F1 mouse/sex) were present within the demonstration

compartment. Object mice were then exposed to 10 consecutive

CS-UCS forward-pairings separated by 90-s intervals. Unlike

other experiments where 2 subjects were concurrently pre-exposed

to object distress, HR was measured from a single subject per pre-

exposure session because the telemetry receiver was only capable

of monitoring the signals from one transponder at a time.

Testing. A single test/subject mouse was placed in the

demonstration compartment and left undisturbed for 20 min on

the telemetry receiver. Each mouse was then exposed to 5

consecutive presentations of the CS-only spaced by 90-s intervals.

Signals from the transponders were sampled from mice at 10-s

intervals throughout all phases of the conditioning protocol. Per

the manufacturer’s recommendation, raw signals were subjected to

the boxcar (buffer size = 120) and exponential (exp. = 4) filters

prior to data analysis (VitalView v.4.1, Respironics Inc.) Following

completion of the 20-min period that preceded each phase of the

experiments, baseline HR for each subject was derived from the

first 90 s of HR data. Data in Figures 7–9 are presented as

deviations from this baseline measurement.

Behavioral measurements of conditioned fear
Freezing behavior was operationally defined as the complete

absence of movement, other than normal respiratory activity. The

duration of freezing behavior was recorded over the period of

testing when the CS was administered. Two independent observers

made the behavioral measurements using computer-assisted

software (ButtonBox v.5.1, Behavioral Research Solutions). Inter-

rater reliabilities were $0.90, with no significant variation between

different experiments (the inter-rater reliability of each experiment

is presented in the legend of its respective figure). Mean values from

the duplicate measurements were used for all data analysis and

graphical presentations. Percent-freezing measurements were

generated by dividing the raw freezing data either by 30 s (for

trials 1-5) or 28 s (for trials 6-10), respectively. Note that freezing on

trial 6 was in response to presentation of the CS-only because the

UCS was not applied until the final 2 s of the trial.

Social conditioned place preference procedure
Juvenile mice (PD 20/21) were weaned into a mixed-sex, mixed-

strain social group of 4 mice (1 mouse/sex/strain) and housed

together for 24 h on corncob bedding with nesting material. On the

next day, groups of mice were re-housed as a social group in a novel,

home cage environment that contained either aspen shavings (Nepco,

Northeastern Products Corp.), two threaded schedule 40 10 PVC

couplers and nesting material or paper bedding (Cellu-DriTM SoftTM,

Shepherd Specialty Papers), two unthreaded schedule 40 10 PVC

couplers and nesting material. Mice were first housed as social groups

in one of the environments for 24 h and then each mouse was socially

isolated in the alternative environment for the next 24 h. Mice were

alternated between social- and isolate-housing for a total of 8 days.

On the final 2 days of conditioning, mice were habituated

individually for 20 min to a 3-compartment testing arena

(30061506150 mm/compartment) that was fabricated from black

ABS plastic prior to being placed in the new conditioning

environment. No conditioning cues were present during the

habituation sessions and mice could freely explore all 3 compartments

of the arena by passing through small openings (50650 mm) in the

walls that separated each compartment. Habituations and testing

took place during the dark phase of the circadian cycle (1600–2000)

under dim red illumination (30–40 lx) and cages were transported to

the procedure room .30 min prior to habituation and testing

sessions. Mice were always tested after 24 h of social isolation. For

testing, individual mice were placed in the central compartment of

the conditioning arena, which contained no conditioning cues. Each

peripheral compartment of the arena contained one of the 2

conditioning environments (i.e., bedding and PVC tubes). The arena

was covered with a transparent sheet of PlexiglasH and mice (early

adolescence; postnatal [PD] 29–30) were videotaped for 30 min as

they moved throughout the arena. Late-adolescent mice (tested on

PD 48–53) remained together as a social group until conditioning,

and then the husbandry schedule and conditioning procedure used

for early-adolescent mice was followed. Socially conditioned place

preference (SCPP) scores were calculated by subtracting the time

each mouse spent in the isolation-paired environment from the time

spent in the socially paired environment. The pairing of the aspen

and paper environments with social and isolate housing was pseudo-

randomized and counter-balanced across and within the 2 age

groups. Following SCPP testing, mice were re-grouped with their

former cage mates into a clean cage that contained corncob bedding

and nesting material.

Social investigation tests
Twenty-four to 48 h after SCPP testing, test mice were placed

alone in cages with fresh corncob bedding and remained in social

isolation for 24 h prior to testing. Cages were transported to the

procedure room .30 min prior to testing and testing took place

during the dark phase of the circadian cycle (1600–2000) under

dim red illumination. Cage tops were removed and replaced with

a transparent piece of PlexiglasH 5–10 min before testing began.

Test mice were presented with a novel, age-matched F1 mouse of

the opposite sex and social interactions were videotaped for 5 min.

Measurements of SI entailed the total duration that the test mouse

directed pro-social behaviors at the stimulus mouse, as described

in more detail elsewhere (see Ref. [27]). Early-adolescent mice

were tested on PD 31–32 and late-adolescent mice were tested on

PD 52–57. Sexual behaviors were not observed during interactions

between early-adolescent mice, but they were observed among

late-adolescent mice. Sexual behavior was not included in the

composite measure of SI.

Mice tested in the SCPP and SI experiments were also used in

the fear conditioning experiments that compared freezing

responses of isolate- and socially housed mice (see Fig. 11). Mice

tested for SCPP and SI during early adolescence remained in

social housing until the beginning of the fear conditioning

experiments, while mice that were tested during late adolescence

were socially housed after SI testing for 1–5 days before the

beginning of the fear conditioning experiments. Mice that were

tested for SCPP and SI during early and late adolescence were

pseudo-randomized and counterbalanced relative to their social

housing condition during the fear conditioning experiments.

Statistics
Three-, 4- and 5-factor ANOVAs where used to assess

behavioral responses, with the genotype of the subjects (BALB

or B6), the sex of the subjects (male or female), the conditioning
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schedule of the objects (paired CS-UCS, unpaired CS-UCS, UCS

only or CS only), test trial (CS only or paired CS-UCS) or housing

context (social or isolate) as between-group factors, and trial

number as a repeated measure. Various combinations of these

factors were used depending on the particular experiment. Post-

hoc comparisons were carried out either with planned orthogonal

comparisons or univariate F-tests that were controlled for type I

error with Bonferroni corrections.
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